A formula
If
A=\left( \begin{array}{ccc} 25 & 15 & 30 \\ 104 & 80 & 120 \\ 30 & 30 & 30 \end{array} \right)
and
B_k= \left( \begin{array}{ccc} -2k^2+k+4 & 2k^2+7k+6 & 0 \\ 2k^2+7k+2 & 0 & 2k^2+7k+6\\ 2k^2-k & 0 & 0 \end{array} \right) }
then the (scaled) columns of
A\prod_{k=2}^{n}B_k
tend towards
\left( \begin{array}{c} log(2)\\ \pi \\ 1 \end{array} \right)
as n\to\infty.
A=\left( \begin{array}{ccc} 25 & 15 & 30 \\ 104 & 80 & 120 \\ 30 & 30 & 30 \end{array} \right)
and
B_k= \left( \begin{array}{ccc} -2k^2+k+4 & 2k^2+7k+6 & 0 \\ 2k^2+7k+2 & 0 & 2k^2+7k+6\\ 2k^2-k & 0 & 0 \end{array} \right) }
then the (scaled) columns of
A\prod_{k=2}^{n}B_k
tend towards
\left( \begin{array}{c} log(2)\\ \pi \\ 1 \end{array} \right)
as n\to\infty.
Labels: mathematics
0 Comments:
Post a Comment
<< Home