Friday, September 03, 2010

A formula

If
\[A=\left( \begin{array}{ccc}
25 & 15 & 30 \\
104 & 80 & 120 \\
30 & 30 & 30 \end{array} \right)
\]
and
\[
B_k=
\left( \begin{array}{ccc}
-2k^2+k+4 & 2k^2+7k+6 & 0 \\
2k^2+7k+2 & 0 & 2k^2+7k+6\\
2k^2-k & 0 & 0 \end{array} \right)
}
\]
then the (scaled) columns of
\[ A\prod_{k=2}^{n}B_k\]
tend towards
\[
\left(
\begin{array}{c}
log(2)\\
\pi \\
1
\end{array}
\right)
\]
as \[n\to\infty.\]

Labels:

0 Comments:

Post a Comment

<< Home